Nonresonant Micromachined Gyroscopes With Structural Mode-Decoupling
نویسنده
چکیده
This paper reports a novel four-degrees-of-freedom (DOF) nonresonant micromachined gyroscope design concept that addresses two major MEMS gyroscope design challenges: eliminating the mode-matching requirement and minimizing instability and drift due to mechanical coupling between the drive and sense modes. The proposed approach is based on utilizing dynamical amplification both in the 2-DOF drive-direction oscillator and the 2-DOF sense-direction oscillator, which are structurally decoupled, to achieve large oscillation amplitudes without resonance. The overall 4-DOF dynamical system is composed of three proof masses, where second and third masses form the 2-DOF sense-direction oscillator, and the first mass and the combination of the second and third masses form the 2-DOF drive-direction oscillator. The frequency responses of the drive and sense direction oscillators have two resonant peaks and a flat region between the peaks. The device is nominally operated in the flat regions of the response curves belonging to the drive and sense direction oscillators, where the gain is less sensitive to frequency fluctuations. This is achieved by designing the drive and sense anti-resonance frequencies to match. Consequently, by utilizing dynamical amplification in the decoupled 2-DOF oscillators, increased bandwidth and reduced sensitivity to structural and thermal parameter fluctuations and damping changes are achieved, leading to improved robustness and long-term stability over the operating time of the device.
منابع مشابه
Distributed-Mass Micromachined Gyroscopes for Enhanced Mode-Decoupling
A novel micromachined z-axis gyroscope with multidirectional drive-mode is presented. The design concept aims to relax mode-matching requirement, eliminate effects of directional residual stresses, and completely decouple the drive and sense modes. The proposed approach is based on de ning multiple drive-mode oscillators, distributed symmetrically around the center of a supporting frame. Quadra...
متن کاملThe Development of Micromachined Gyroscope Structure and Circuitry Technology
This review surveys micromachined gyroscope structure and circuitry technology. The principle of micromachined gyroscopes is first introduced. Then, different kinds of MEMS gyroscope structures, materials and fabrication technologies are illustrated. Micromachined gyroscopes are mainly categorized into micromachined vibrating gyroscopes (MVGs), piezoelectric vibrating gyroscopes (PVGs), surface...
متن کاملEffect of Axial Force on the Performance of Micromachined Vibratory Rate Gyroscopes
It is reported in the published literature that the resonant frequency of a silicon micromachined gyroscope decreases linearly with increasing temperature. However, when the axial force is considerable, the resonant frequency might increase as the temperature increases. The axial force is mainly induced by thermal stress due to the mismatch between the thermal expansion coefficients of the stru...
متن کاملStructurally decoupled micromachined gyroscopes with post-release capacitance enhancement
This paper reports a novel micromachined gyroscope design that provides enhanced decoupling of the drive and sense modes, and increased actuation and detection capacitances beyond the fabrication process limitations. The decoupling mechanism minimizes the effects of fabrication imperfections and the resulting anisoelasticities, by utilizing independent folded flexures and constrained moving ele...
متن کاملRobust Micromachined Gyroscopes for Automotive Applications
This paper reports a micromachined gyroscope with a 2-DoF sense-mode oscillator that provides a flat region in the sense-mode frequency response curve, where the amplitude and phase of the response are insensitive to parameter fluctuations. The sensitivity is also improved by utilizing dynamical amplification of oscillations in the 2-DoF sense-mode oscillator. Thus, improved long-term stability...
متن کامل